

Finite-Ground Coplanar-Waveguide Branch-Line Cougplers

Chieng-Tang Lin, Chun-Lin Liao, and Chun Hsiung Chen, *Fellow, IEEE*

Abstract—Two branch-line (BL) couplers based on finite-ground coplanar-waveguide (FGCPW) structures are proposed. The first one uses the bended structure to reduce the size of the normal quarter-wavelength two-arm BL coupler. The second one improves the bandwidth by adding external compensated networks, which are also folded for size reduction. In this study, the performances of these BL couplers are examined, theoretically and experimentally.

Index Terms—Branch-line coupler, finite-ground coplanar-waveguide structure.

I. INTRODUCTION

BRANCH-LINE (BL) couplers play important roles in implementing 90° power dividers and combiners. They are fundamental parts of microwave circuits such as balanced amplifiers, balanced mixers, image rejection mixers, frequency discriminators, and circularly polarized antennas. A basic BL coupler is formed by four quarter-wavelength ($\lambda/4$) transmission lines, thus its size is quite large and its bandwidth is relatively limited. BL couplers have been implemented using the stripline [1], microstrip-line [2], multilayer [3], and double-sided [4], [5] structures.

BL couplers were also realized by the uniplanar structures. Hirota *et al.* [6] proposed a reduced-size BL coupler by using the combination of shorter high-impedance coplanar-waveguide (CPW) lines and shunt lumped capacitors. Its size may be drastically reduced, but the uniplanar feature of CPW structure would be destroyed by the introduction of shunt metal-insulator-metal capacitors. Ho *et al.* [7], [8] implemented a uniplanar BL coupler by using a coupled rectangular slotline ring for coupling and bandwidth improvement. Its bandwidth can be increased up to 40%, but its input and output ports are realized by the slotline structures which need additional coplanar waveguide-to-slotline transition structures for connection to the other circuit components. Alternatively, Heimer *et al.* [9] utilized the asymmetrical coplanar strips to implement the uniplanar BL coupler. The BL couplers in [7]–[9] all have $\lambda/4$ line sections whose sizes are relatively large.

Recently, the finite-ground coplanar-waveguide (FGCPW) structure received considerable attention in implementing a variety of circuit components such as filters [10], antenna

Manuscript received September 16, 2000; revised December 27, 2000. This work was supported by the Ministry of Education and National Science Council of Taiwan, R.O.C., under Grants 89-E-FA06-2-4 and NSC 89-2213-E-002-047. The review of this letter was arranged by Associate Editor Dr. Arvind Sharma.

The review of this letter was arranged by Associate Editor Dr. A. K. Bhattacharya. The authors are with the Department of Electrical Engineering and Graduate Institute of Communication Engineering, National Taiwan University, Taipei 106, Taiwan, R.O.C. (e-mail: chchen@ew.ee.ntu.edu.tw).

Publisher Item Identifier S 1531-1309(01)03212-3

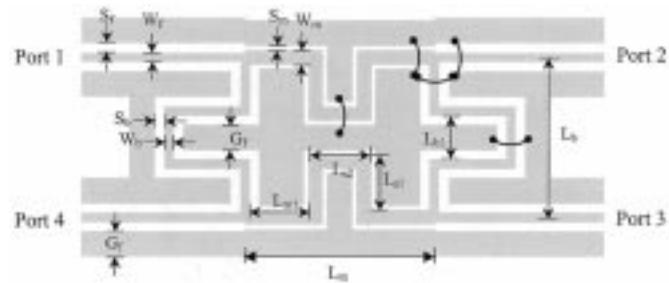


Fig. 1. Configuration of bended FGCPW BL coupler. ($W_m = 1.1$ mm, $S_m = 0.4$ mm, $W_f = W_b = 0.7$ mm, $S_f = S_b = 0.8$ mm, $L_m = 15.12$ mm, $L_{m1} = 6.56$ mm, $L_{b1} = 3.6$ mm, $L_b = 12.9$ mm, $L_{s1} = 4.5$ mm, $L_{s2} = 5$ mm, $G_f = 2$ mm.)

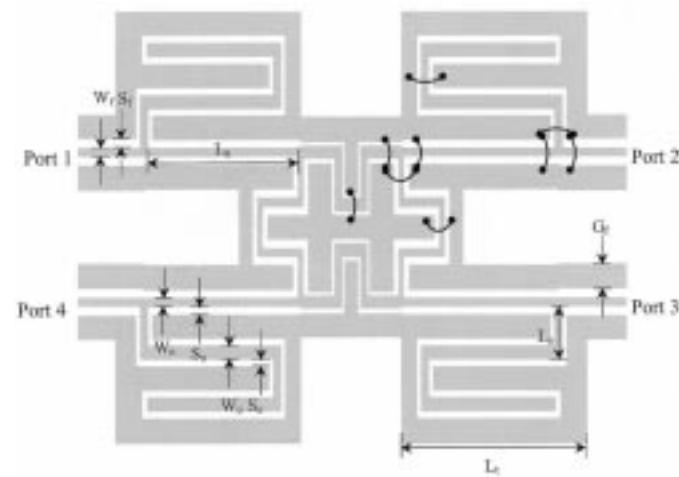


Fig. 2. Configuration of bended and folded broadband BL coupler. ($W_f = W_n = S_n = 0.7$ mm, $S_f = 0.8$ mm, $W_o = 0.7$ mm, $S_o = 0.7$ mm, $L_n = 23$ mm, $L_o = 4.5$ mm, $L_t = 27.8$ mm, $G_f = 2$ mm. Dimensions for bended main and branch parts are the same as in Fig. 1.)

feeders [11], and reversed-phase hybrid-ring couplers [12], [13]. The FGCPW line has the merits of the conventional coplanar waveguide such as easy connection of series and shunt components [10]. The FGCPW structure may achieve the high-density integration by reducing the real estate of ground planes [11], and can provide an additional parameter, the width of the ground plane, for adjusting the line impedance. The FGCPW structure may overcome the parasitic parallel-plate waveguide-mode problem associated with the conventional backside-metallization coplanar waveguide [10]. Another attractive feature of FGCPW line is that a crossover of signal strip and ground plane can easily be achieved, and this crossover is essential in providing a 180° phase shift for a reversed-phase hybrid-ring coupler [12], [13]. In this study, two uniplanar BL couplers (Figs. 1 and 2) realized by FGCPW structures are

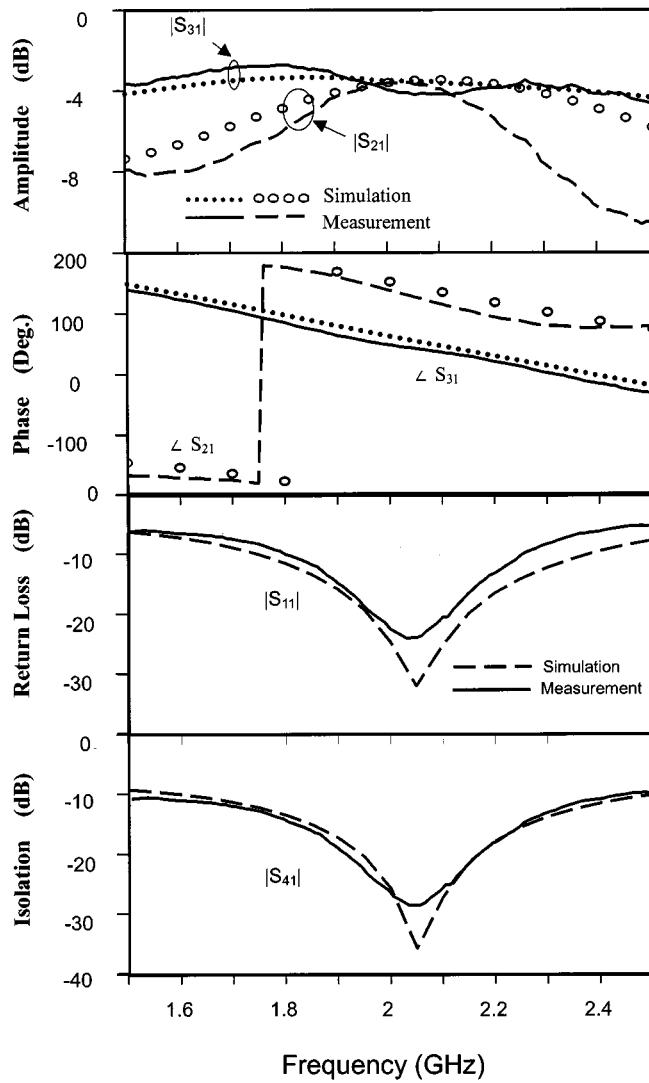


Fig. 3. S -parameters of bended FGCPW BL coupler shown in Fig. 1.

proposed and examined. The main and branch FGCPW lines are bended to achieve the goal of size reduction. The external compensated networks consisting of series $\lambda/4$ transformers shunted by half-wavelength ($\lambda/2$) folded open stubs are also introduced in the coupler structure of Fig. 2 for improving its bandwidth.

II. BRANCH-LINE COUPLER STRUCTURES

The essential parts of a normal BL coupler are the four $\lambda/4$ main and branch transmission lines. Fig. 1 shows the proposed bended BL coupler based on the FGCPW structure. This is a modified version of the normal BL coupler which consists of straight $\lambda/4$ FGCPW lines. Here, the main lines and branch lines of the proposed coupler (Fig. 1) are bended so as to achieve the goal of size reduction. The discontinuity effects associated with the bended structures are minor and the total lengths of bended main and branch lines are still around $\lambda/4$.

Based on the core bended structure shown in Fig. 1, a novel FGCPW BL coupler (Fig. 2) to give better bandwidth is also

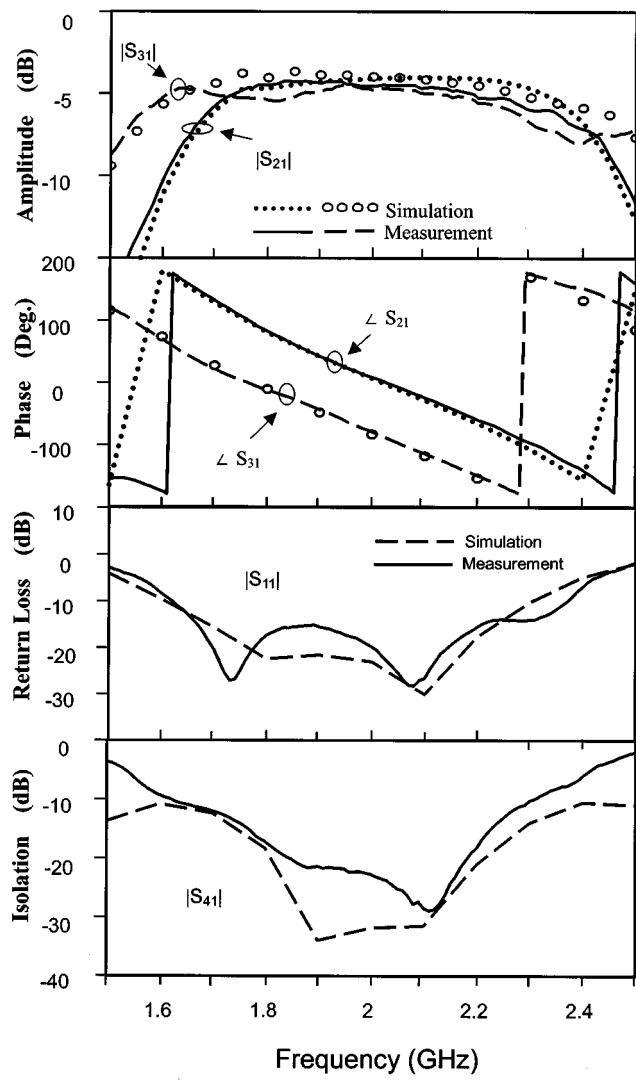


Fig. 4. S -parameters of bended and folded broadband BL coupler shown in Fig. 2.

proposed. In order to design a coupler with 25% bandwidth, compensated networks at four ports [1] are added in the design process. Each compensated network consists of a series $\lambda/4$ transformer which is shunted by a $\lambda/2$ open stub. For size reduction, each external $\lambda/2$ open stub is folded to form the structure shown in Fig. 2. Here, the length of each folded line section is again around $\lambda/2$, indicating that the discontinuity effects due to folded structures are still not important.

In this study, the coupler's bandwidth is described by the conditions on the S -parameters: $|S_{11}| < -15$ dB, $|S_{41}| < -15$ dB, $|S_{21}| - |S_{31}| \leq \pm 1$ dB, and $\angle S_{21} - \angle S_{31} \leq 90^\circ \pm 10^\circ$.

The FGCPW BL couplers shown in Figs. 1 and 2 are fabricated on the FR4 substrate ($\epsilon_r = 4.6$, $\tan \delta = 0.022$, $h = 1.6$ mm) and designed at center frequency 2 GHz. In this study, the characteristic impedances of the feed lines are chosen as 100Ω for easy realization on the FR4 substrate. The impedances of main lines and branch lines are 70.7Ω and 100Ω , and the impedances of the transformers and open stubs in compensated networks of Fig. 2 are 97Ω and 84.75Ω , respectively. For the feed line, the width W_f of the center conductor is 0.7

mm and the slot width S_f is 0.8 mm. All FGCPW's have the ground-plane width G_f of 2 mm.

For the proposed structures shown in Figs. 1 and 2, bond wires are added to suppress the unwanted coupled-slotline mode excited at discontinuities. For simplicity and by symmetry, only the bond wires in the first quadrant are shown in Figs. 1 and 2. Practically, additional bond wires should also be added in the other quadrants.

III. RESULTS

The proposed BL couplers (Figs. 1 and 2) are designed based on the quasistatic characteristic-impedance formulas for FGCPW lines [14]. They are then simulated by the tool Zeland IE3D, including the simulation of bond wires. The S -parameters are measured by using the HP8510B network analyzer together with the TRL (through-reflect-line) calibration technique.

For the bended BL coupler shown in Fig. 1, its size may be reduced to 60% of the normal $\lambda/4$ BL coupler without bending and its bandwidth is 14%. Fig. 3 shows the simulated and measured results for the S -parameters. The return loss is less than -15 dB in the range $1.9\sim2.17$ GHz. The difference between $|S_{21}|$ and $|S_{31}|$ is under ± 1 dB within $1.9\sim2.18$ GHz and the phase difference between S_{21} and S_{31} is within $90^\circ\pm 5^\circ$ in the frequency range $1.75\sim2.26$ GHz.

For the bended and folded broadband BL coupler (Fig. 2), its size may be reduced to 1/4 of the corresponding broadband structure without bending and folding. Fig. 4 shows the simulated and measured results for the structure shown in Fig. 2. In the range of $1.82\sim2.31$ GHz, the difference between $|S_{21}|$ and $|S_{31}|$ is under ± 1 dB, and the phase difference between S_{21} and S_{31} is within $90^\circ\pm 5^\circ$. The isolation response and return loss are also shown in Fig. 4. The bandwidth of the structure (Fig. 2) is 22%, which is larger than that (14%) of the structure shown in Fig. 1. In comparison with the normal BL coupler with non-bended $\lambda/4$ line sections which has a bandwidth of 15%, the improvement of the bandwidth (22%) is accompanied by an expansive cost of size increase (with factor around 3).

IV. CONCLUSIONS

Two FGCPW BL couplers have been proposed. The first BL coupler (Fig. 1) is realized by using the bended FGCPW struc-

ture. The area of this bended BL coupler (Fig. 1) may be reduced up to 40%, but its bandwidth is narrower (14%). For the bended and folded broadband BL coupler (Fig. 2), its size is reduced to 1/4 of the corresponding broadband design without bending and folding, and its bandwidth is about 22%. The proposed BL couplers are suitable for MIC/MMIC applications.

REFERENCES

- [1] G. P. Riblet, "A directional coupler with very flat coupling," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-26, pp. 70–74, Feb. 1978.
- [2] M. Muraguchi, T. Yukitake, and Y. Naito, "Optimum design of 3-dB branch-line couplers using microstrip lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-31, pp. 674–678, Aug. 1983.
- [3] S. Banba, T. Hasegawa, and H. Ogawa, "Multilayer MMIC branch-line hybrid using thin dielectric layers," *IEEE Microwave Guided Wave Lett.*, vol. 1, pp. 346–347, Nov. 1991.
- [4] C. Y. Lee and T. Itoh, "Full-wave analysis and design of a new double-sided branch-line coupler and its complementary structure," *IEEE Trans. Microwave Theory Tech.*, vol. 43, pp. 1895–1901, Aug. 1995.
- [5] J. H. Lee and H. Y. Lee, "Novel quadrature branch-line coupler using CPW-to-microstrip transitions," in *IEEE MTT-S Int. Microwave Symp.*, 2000, pp. 621–624.
- [6] T. Hirota, A. Minakata, and M. Muraguchi, "Reduced-size branch-line and rat-race hybrids for uniplanar MMIC's," *IEEE Trans. Microwave Theory Tech.*, vol. 38, pp. 270–275, March 1990.
- [7] C. H. Ho, L. Fan, and K. Chang, "A broad-band uniplanar branch-line coupler using a coupled rectangular slotline ring," *IEEE Microwave Guided Wave Lett.*, vol. 3, pp. 175–176, June 1993.
- [8] C. H. Ho, L. Fan, and K. Chang, "Broad-band uniplanar hybrid-ring and branch-line couplers," *IEEE Trans. Microwave Theory Tech.*, vol. 41, pp. 2116–2125, Dec. 1993.
- [9] B. R. Heimer, L. Fan, and K. Chang, "Uniplanar hybrid couplers using asymmetrical coplanar striplines," *IEEE Trans. Microwave Theory Tech.*, vol. 45, pp. 2234–2240, Dec. 1997.
- [10] F. Brauchler, S. Robertson, J. East, and L. P. B. Katehi, "W-band finite ground coplanar (FGC) line circuit elements," in *IEEE MTT-S Int. Microwave Symp.*, 1996, pp. 1845–1848.
- [11] L. Zhu and K. Wu, "Hybrid FGCPW/CPS scheme in the building block design of low-cost uniplanar and multilayer circuit and antenna," in *IEEE MTT-S Int. Microwave Symp.*, 1999, pp. 867–869.
- [12] C. Y. Chang and C. C. Yang, "A novel broad-band Chebyshev-response rat-race ring coupler," *IEEE Trans. Microwave Theory Tech.*, vol. 47, pp. 455–462, Apr. 1999.
- [13] C. W. Kao and C. H. Chen, "Miniaturized uniplanar 180° hybrid-ring couplers with $0.8 \lambda_g$ and $0.67 \lambda_g$ circumferences," in *Asia-Pacific Microwave Conf.*, 2000, pp. 217–220.
- [14] G. Ghione and C. U. Naldi, "Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-35, pp. 260–267, Mar. 1987.